MRAM-Info: the MRAM experts

MRAM-Info is a news hub and knowledge center born out of keen interest in MRAM memory technologies.

MRAM is a next-generation memory technology, based on electron spin rather then its charge. Often referred to as the "holy-grail of memory", MRAM is fast, high-density and non-volatile and can replace all kinds of memories used today in a single chip.

Recent MRAM News

Samsung will be ready with MRAM chips "soon"

Apr 21, 2016

Samsung logoSamsung's semiconductor chief Kim Ki-nam says that Samsung is developing next-generation memory technologies, such as MRAM and RRAM. According to Kim "Samsung will commercialize MRAMs and ReRAMs according to our own schedule. We are on our way and will be ready soon"

Samsung targets MRAM as an update to DRAM memory, while RRAM will be used as a storage memory to replace NAND.

Everspin starts sampling 256Mb ST-MRAM chips, plans 1Gb chips by the end of 2016

Apr 15, 2016

Everspin announced that it started shipping 256Mb ST-MRAM samples to customers. Everspin also plans to increase the density and sample 1Gb ST-MRAM chips later this year. The new chips demonstrate interface speeds comparable to DRAM, with DDR3 and DDR4 interfaces. Volume production is expected "soon".

Everspin EMD3D256 256Mb ST-MRAM photo

The new EMD3D256 chips are based on Everspin's proprietary perpendicular magnetic tunnel junction (pMTJ) spin torque technology - and the company expects the new technology to enable it to produce ST-MRAM in lower geometries - and higher densities beyond 1Gb in the future.

Researchers suggest and demonstrate a new scheme of spin-orbit-torque (SOT) induced magnetization switching

Mar 22, 2016

Researchers at Tohoku University developed a new scheme of spin-orbit-torque (SOT) induced magnetization switching. In the new scheme the magnetization directed collinear with the current.

Structures of spin orbit torque induced magnetization

The researcher fabricated three-terminal devices with the new structure (using a Ta/CoFeB/MgO-based magnetic tunnel junction) and successfully demonstrated the switching operation. The research report a "reasonably small" required current density to induce the magnetization switching and a "reasonably large" resistance difference between 0 and 1 states. They say that this is a promising candidate for future MRAM devices.

A new method to make MRAM faster and more efficient by bending current

Mar 07, 2016

Researchers from Eindhoven's University of Technology (TU/e) managed to use a bending current to change an MRAM "bit". The result is a much more efficient memory write cycle that is also faster than conventional MRAM methods.

MRAM bit change by bending current

The idea is to use a current pulse under the MRAM cell bit which bends the electrons at the correct spin upwards towards MRAM bit. This was achieved before, but using a magnetic field. In this new method, the researchers applied an anti-ferromagnetic material to the top of the MRAM bits, which enabled the requisite magnetic field to be frozen.

New etching process developed specifically for MRAM production

Mar 06, 2016

Researcher from Cornell's NanoScale Science and Technology Facility (CNF), in collaboration with Oxford Instruments Plasma Technology (OIPT) developed a new etching process targeted specifically for MRAM device fabrication.

The MTJ developed by CNF and OIPD

The etching of the MTJ stack is a challenging step in MRAM fabrication, because the magnetic materials do not easily react to etching agents, and so manufactures usually use purely physical ion milling processes - which results in low etch rates, low selectivity and damage to the device structure itself.