Researchers develop the world's smallest high-performance MTJ

Researchers from Tohoku University say they have developed the world's smallest (2.3 nm) high-performance magnetic tunnel junctions (MTJs).

Shape anisotropy MTJ scheme (Tohoku University)

The design is based on the Shape-anisotropy MTJ (developed by the same researchers in 2018) in which thermal stability is enhanced by making the ferromagnetic layer thick. In this new research, the scientists used a new structure that uses magnetostatically coupled multilayered ferromagnets - which enabled the scaling down to 2.3 nm diameters.

Read the full story Posted: Dec 09,2020

Everspin reports its financial results for Q3 2020, is cash flow positive for the first time ever

Everspin Technologies announced its Q3 2020 financial results, with revenues of $10.1 million, up 10% from Q3 2019 ($9.2 million) but down $14% from Q2 2020 ($11.8 million). The company's net less was $3.9 million.
Everspin Technologies chip photo

Looking at the balance sheet, Everspin reports a cash flow of $1 million in the quarter - this was the first quarter ever for Everspin to have a positive cash flow.

Read the full story Posted: Nov 08,2020

Numem to supply its STT-MRAM to a NASA AI core project

High-performance STT-MRAM developer Numem announced that it has been selected for a NASA AI project, for which the company will supply its Numem NuRAM MRAM-based Memory. Numem says its memory enables a 2-3x smaller memory area and 20x to 50x lower standby power compared to SRAM.

The project, titled “DNN Radiation Hardened Co-processor as companion chip to NASA’s upcoming High-Performance Spaceflight Computing Processor” will develop a reconfigurable DNN Engine with multiple compute units which can support a wide range of DNN models and frame rates.

Read the full story Posted: Oct 09,2020

Superlattice and half-metallic magnets used to developed SS-MRAM, an ultra-high performance MRAM device

Researchers from the National Taiwan University developed an ultra-high performance MTJ, using a superlattice barrier and half-metallic magnets. The so-called superlattice-MTJ can be the basis of a new class of STT-MRAM (which the researcher call SS-MRAM) that achieves ultra-low power RA and write operations, high writing speed and unlimited endurance.

Geometric structure of a three-cell superlattice MTJ (National Taiwan University)

SS-MRAM adopts a superlattice barrier that replaces the MgO layer used in common STT-MRAM. The MgO layer is unstable and also suffers from a very large RA which results in high power consumption for writing operations. The superlattice has higher spin polarization than MgO and so the SS-MARM can provides not only ultra-high MR ratio but also ultra-low RA for high-speed and low power writing.

Read the full story Posted: Oct 06,2020

Avalanche Technology's Serial P-SRAM STT-MRAM memory devices are now shipping

pMTJ STT-MRAM developer Avalanche Technology announced that its new industrial-grade Serial (SPI) P-SRAM (Persistent SRAM) memory devices are now available. The Serial (SPI) memory devices are designed to be drop-in replacements to Cypress F-RAM and Everspin Toggle MRAM memory products.

Avalanche pMTJ STT-MRAM P-SRAM Serial QSPI Evaluation Kit photo

The Series (SPI) series supports up to 50MHz clock rate in 1Mb and 4Mb density options, in two packages - 8-pin SOIC and 8-pin WSON. These use Avalanche's 40nm pMTJ STT-MRAM chips.

Read the full story Posted: Sep 29,2020

NTHU researchers discover that a thin film of platinum can enable faster and more efficient MRAM

A team of researchers from the National Tsing Hua University (NTHU) in Taiwan have discovered that by adding a layer of platinum only a few nanometers thick, one can switch the pinned magnetic moments at MRAM cells at will. This was never achieved before, and can lead to faster and more efficient MRAM devices.

The platinum layer is placed between the two layers of the MRAM device - the upper layer, a freely flipping magnet used for data computation and the bottom layer that consists of a fixed magnet, responsible for data storage. Due to spin-orbit interactions, the electric current drives the collective motion of electron spins first. The spin current then switches the pinned magnetic moment effectively and precisely.

Read the full story Posted: Sep 27,2020

SOT-MRAM developer Antaios raises $11 million

SOT-MRAM developer Antaios raised $11 million from VCs and Applied Ventures, to accelerate its next-generation memory development and develop new strategic partnerships.

SOT-MRAM vs STT-MRAM bitcell

SOT-MRAM devices feature switching of the free magnetic layer done by injecting an in-plane current in an adjacent SOT layer, unlike STT-MRAM where the current is injected perpendicularly into the magnetic tunnel junction and the read and write operation is performed through the same path.

Read the full story Posted: Sep 17,2020